Hydrogen generation from water using Mg nanopowder produced by arc plasma method.

نویسندگان

  • Masahiro Uda
  • Hideo Okuyama
  • Tohru S Suzuki
  • Yoshio Sakka
چکیده

We report that hydrogen gas can be easily produced from water at room temperature using a Mg nanopowder (30-1000 nm particles, average diameter 265 nm). The Mg nanopowder was produced by dc arc melting of a Mg ingot in a chamber with mixed-gas atmosphere (20% N2-80% Ar) at 0.1 MPa using custom-built nanopowder production equipment. The Mg nanopowder was passivated with a gas mixture of 1% O2 in Ar for 12 h in the final step of the synthesis, after which the nanopowder could be safely handled in ambient air. The nanopowder vigorously reacted with water at room temperature, producing 110 ml of hydrogen gas per 1 g of powder in 600 s. This amount corresponds to 11% of the hydrogen that could be generated by the stoichiometric reaction between Mg and water. Mg(OH)2 flakes formed on the surface of the Mg particles as a result of this reaction. They easily peeled off, and the generation of hydrogen continued until all the Mg was consumed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen generation by reaction of Si nanopowder with neutral water

Si and its oxide are nonpoisonous materials, and thus, it can be taken for medical effects. We have developed a method of generation of hydrogen by use of reactions of Si nanopowder with water in the neutral pH region. Si nanopowder is fabricated by the simple bead milling method. Si nanopowder reacts with water to generate hydrogen even in cases where pH is set at the neutral region between 7....

متن کامل

Fabrication of Si nanopowder and application to hydrogen generation and photoluminescent material

Si nanopowder is fabricated using the simple beads milling method. Fabricated Si nanopowder reacts with water in the neutral pH region between 7 and 9 to generate hydrogen. The hydrogen generation rate greatly increases with pH, while pH does not change after the hydrogen generation reaction. In the case of the reactions of Si nanopowder with strong alkaline solutions (eg pH13.9), 1600 mL hydro...

متن کامل

Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO₃)₃∙xH₂O) was used as a raw material and NH₃ gas was used as a nitridation source. Additionally, melamine (C₃H₆N₆) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga₂O₃). Argo...

متن کامل

Effects of H2O2 and Low pH Produced by Gliding Arc Discharge on the Inactivation of Escherichia Coli in Water

The efficacy of gliding arc (GA) discharge for the generation of hydrogen peroxide (H2O2) and water with a low pH was studied because H2O2 combined with low-pH environment is known as a strong oxidizer that can be used for the bacterial inactivation. The ability of the GA discharge to inactivate Escherichia coli in water was tested experimentally, and the inactivation was found to increase with...

متن کامل

Removal of Arsenic from Water Using Aluminum Nanoparticles Synthesized through Arc Discharge Method

The present study describes a novel procedure for As (V) removal from water using pure Al nanoparticles (AlNps) prepared by arc discharge technique. Some spectroscopic and microscopic techniques such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) corroborated the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science and technology of advanced materials

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2012